The Scattering Matrix

Motivation for introducing the SM:
(1) The open and short circuit required for the Z and Y parameters cannot usually be implemented in actual high-frequency measurements (parasitic C and L);
(2) There may be biasing and/or stability problems for active devices. Hence, it is preferable to measure the two-port under its actual operating conditions;
(3) At microwave frequencies, V and I are hard to measure; only power and phase are detectable.
(4) Always exist.
D.M Pozar, John Wiley; Microwave Engineering

A photograph of the Hewlett-Packard HP8510B Network Analyzer. This test instrument is used to measure the scattering parameters (magnitude and phase) of a one ore two-port microwave network from 0.05 GHz to 26.5 GHz . Built-in microprocessors provide error correction, a high degree of accuracy, and a wide choice of display formats. This analyzer can also perform a fast Fourier transform of the frequency domain data to provide a time domain response of the network under test.

Definitions

We shall use variables, which are directly related to power. The inputs (incident signals) are related to the known maximum available power of the generator at the port; outputs (reflected signals) are related to the actual output power at the port.

Assume resistive terminations R_{k} at all ports, with or without a generator E_{k}. The actual port variables are V_{k} and I_{k}, considered peak value phasors of steady-state sine-wave signals.

Associated direction

We define the following hypothetical quantities:
Incident voltage $V_{i k}$ at port k : the output voltage $E_{k} / 2$ of the generator at port k under matching (max-power) conditions.

Incident current I_{ik} at port k : the output current $\mathrm{Ek} /\left(2 \mathrm{R}_{\mathrm{k}}\right)$ of the generator at port k under matching conditions.

Incident wave signal a_{k} at port $\mathrm{k}: a_{k}=\sqrt{V_{i k} I_{i k}}=\frac{V_{i k}}{\sqrt{R_{k}}}=I_{i k} \sqrt{R_{k}}$

Hence, $\frac{\left|a_{k}\right|^{2}}{2}=\frac{E_{k}{ }^{2}}{8 R_{k}}=P_{\max k}$
$\underline{\text { Reflected voltage }} \mathrm{V}_{\mathrm{rk}}$ at port k : the difference between the actual and incident voltages;
$\mathrm{V}_{\mathrm{rk}}=\mathrm{V}_{\mathrm{k}}-\mathrm{V}_{\mathrm{ik}}$. If there is no generator, V_{rk} equals the actual voltage at port k .
Reflected current I_{rk} at port k : The difference between the incident and actual currents (notice the sign difference!); $\mathrm{I}_{\mathrm{RK}}=\mathrm{I}_{\mathrm{ik}}-\mathrm{I}_{\mathrm{k}}$. If there is no generator at port $\mathrm{k}, \mathrm{I}_{\mathrm{rk}}=-\mathrm{I}_{\mathrm{k}} . \mathrm{V}_{\mathrm{rk}}=\mathrm{R}_{\mathrm{k}} \mathrm{I}_{\mathrm{rk}}$.

Reflected wave (signal) b_{k} at port $\mathrm{k}: b_{k}=\sqrt{V_{r k} I_{r k}}=V_{r k} / \sqrt{R_{k}}=I_{r k} \sqrt{R_{k}}$

Hence $\left|b_{\mathrm{k}}\right|^{2} / 2=\mathrm{V}_{\mathrm{rk}} \cdot \mathrm{I}_{\mathrm{rk}} / 2$. If there is no generator, this is the actual power exiting at port k.

As will be shown, the actual power entering at pork k where there is a generator is
$\left[\left|a_{k}\right|^{2}-\left|b_{k}\right|^{2}\right] / 2$.
Scattering Matrix \underline{S} connects the column vectors \underline{a} and \underline{b} formed from all incident and reflected signals: $\quad \underline{b}=\underline{S} \underline{a}$

From this definition it follows that the 1 m element of \underline{S} is given by
$S_{l m}=\frac{b_{l}}{a_{m}}=\frac{V_{r_{i}} / \sqrt{R_{l}}}{E_{m} /\left(2 \sqrt{R_{m}}\right)}=\frac{V_{l} / \sqrt{R_{l}}}{E /\left(2 \sqrt{R_{m}}\right)}, l \neq m$
Where $\mathrm{E}_{\mathrm{k}}=0$ is set for all $\mathrm{k} \neq \mathrm{m}$.
$\left|\mathrm{S}_{\mathrm{Im}}\right|^{2}$ has a clear physical meaning:
$\left|\mathrm{S}_{\mathrm{lm}}\right|^{2}=\frac{P_{r l}}{P_{\max m}}=\quad \begin{aligned} & \text { actual power leaving port } \mathrm{l} \\ & \text { maximum power from port } \mathrm{m}\end{aligned}$
$\mathrm{E}_{\mathrm{k}}=0$ for $\mathrm{k} \neq \mathrm{m}$.

For the diagonal element s_{11}, with the only generator E_{1}.
$V_{l}=E_{l} \frac{Z_{l}}{Z_{l}+R_{l}}$

Which gives

$$
\frac{b_{l}}{a_{l}}=s_{l l}=\frac{Z_{l}-R_{l}}{Z_{l}+R_{l}}
$$

Reflection Coefficient at port 1:

Gives the ratio of the reflected and incident powers. The power entering port 1 is therefore given by:
$P_{l}=P_{i l}-P_{r l}=P_{i l}\left[1-\left|S_{l l}\right|^{2}\right]$

Noted that the scattering relations given above describe not only the N-port (like e.g., the open-circuit impedance equations) but also its terminations and sources.

By KVL, $\mathrm{E}=\mathrm{V}+\mathrm{RI} \quad \rho \mathrm{E}=\mathrm{V}-\mathrm{RI}=\frac{V-R I}{V+R I} E$

So $\rho=\frac{V-R I}{V+R I}=\frac{Z-R}{Z+R} \quad$ the Reflectance (Reflection Coefficient)

By superposition:

$$
\begin{aligned}
V_{i} & =\frac{1}{2}(V+R I) \\
I_{i} & =\frac{1}{2 R}(V+R I)
\end{aligned}
$$

$$
V_{i}=R I_{i}
$$

$$
\begin{gathered}
V_{r}=\frac{1}{2}(V-R I) \\
I_{r}=\frac{1}{2 R}(V-R I) \\
V_{r}=R I_{r}
\end{gathered}
$$

We define:

$$
\begin{array}{ll}
\text { Incident signal }=\mathrm{a}=\sqrt{V_{i} I_{i}} & \text { Reflected signal }=\mathrm{b}=\sqrt{V_{r} I_{r}} \\
=R^{-\frac{1}{2}} V_{i} & =R^{-\frac{1}{2}} V_{r} \\
=R^{\frac{1}{2}} I_{i} & =R^{\frac{1}{2}} I_{r}
\end{array}
$$

$$
\begin{array}{ll}
a=\frac{1}{2}\left(R^{-\frac{1}{2}} V+R^{\frac{1}{2}} I\right) & V=R^{\frac{1}{2}}(a+b) \\
b=\frac{1}{2}\left(R^{-\frac{1}{2}} V-R^{\frac{1}{2}} I\right) & I=R^{-\frac{1}{2}}(a-b)
\end{array}
$$

Given that

$$
\begin{array}{cl}
\mathrm{V}=\mathrm{ZI} \\
R^{\frac{1}{2}}(a+b)=Z R^{-\frac{1}{2}}(a-b) & \\
a+b=z_{n}(a-b) & \text { where } Z_{n} \equiv R^{-\frac{1}{2}} Z R^{-\frac{1}{2}} \\
\left(Z_{n}+1\right) b=\left(Z_{n}-1\right) a & \\
b=\left(Z_{n}+1\right)^{-1}\left(Z_{n}-1\right) a & \\
b=S a & \\
S=\left(Z_{n}+1\right)^{-1}\left(Z_{n}-1\right) & =\rho=(Z-R) /(Z+R)
\end{array}
$$

where

If the 1-port is passive, $Z \& Z_{n}$ are positive functions.
i.e. $\operatorname{Re}\{Z\} \geq 0$ for $\sigma \geq 0$ \& the same for Z_{n}

Then S satisfies $\quad|\mathrm{S}| \leq 0$ for $\sigma \geq 0$

S is then called a bounded function
Z_{n} is positive iff S is bounded.

Power relations

The active power absorbed by the 1-port is

$$
\begin{aligned}
& W_{a}=\frac{1}{2} \operatorname{Re}\left\{\bar{I} V e^{2 \sigma t}\right\}=\frac{1}{2} \operatorname{Re}\left\{(\bar{a}-\bar{b}) R^{-\frac{1}{2}} R^{\frac{1}{2}}(a+b) e^{2 \sigma t}\right\} \\
&=\frac{1}{2} e^{2 \sigma t} \operatorname{Re}\{(\bar{a}-\bar{b})(a+b)\} \\
&=\frac{1}{2} e^{2 \sigma t} \operatorname{Re}\{(\bar{a} a-\bar{b} b)+(\bar{a} b-\bar{b} a)\} \\
& \quad \text { Real Imag. } \\
& W_{a}=\frac{1}{2} e^{2 \sigma t}\left\{|a|^{2}-|b|^{2}\right\}
\end{aligned}
$$

Since $b=S a \quad \&|b|^{2}=|S|^{2}|a|^{2}$
$\underline{W_{a}=\frac{1}{2} e^{2 \sigma t}\left(1-|S|^{2}\right)|a|^{2}}$

In the harmonic state $\sigma=0 \& W_{\mathrm{a}}=\mathrm{P}$

$$
P=\frac{1}{2}\left(1-|S|^{2}\right)|a|^{2}
$$

P is a maximum when $|S|^{2}=0 \quad$ i.e. $Z=R$
So $P_{\text {max }}=\frac{1}{2}|a|^{2}$ is maximum available power from source.
Hence $\underline{P=\left(1-|S|^{2}\right) P_{\underline{\max }}}$

N-port case

$$
\begin{aligned}
& \underline{\mathrm{V}}=\mathrm{n} \text {-vector of port voltages } \\
& \underline{\mathrm{I}}=\mathrm{n} \text {-vector of port current } \\
& \underline{\mathrm{R}}=\operatorname{diag}\left(\mathrm{R}_{1}, \mathrm{R}_{2}, \ldots, \mathrm{R}_{\mathrm{n}}\right) \& \underline{\mathrm{R}}^{-1} \\
& \underline{\mathrm{R}}^{\frac{1}{2}}=\operatorname{diag}\left(R_{1}^{\frac{1}{2}}, R_{2}^{\frac{1}{2}}, \ldots, R_{n}^{\frac{1}{2}}\right) \& \underline{\mathrm{R}}^{-\frac{1}{2}}
\end{aligned}
$$

Exactly as in the 1-port case

$$
\begin{array}{ll}
\underline{a}=\frac{1}{2}\left(\underline{R}^{-\frac{1}{2}} \underline{V}+\underline{R}^{\frac{1}{2}} \underline{I}\right) & \underline{V}=\underline{R}^{\frac{1}{2}}(\underline{a}+\underline{b}) \\
\underline{b}=\frac{1}{2}\left(\underline{R}^{-\frac{1}{2}} \underline{V}-\underline{R}^{\frac{1}{2}} \underline{I}\right) & \underline{I}=\underline{R}^{-\frac{1}{2}}(\underline{a}-\underline{b}) \\
\underline{V_{i}}=\underline{R}^{\frac{1}{2}} \underline{a} & \underline{I_{i}}=\underline{R}^{-\frac{1}{2}} \underline{a} \\
\underline{V_{r}}=\underline{R}^{\frac{1}{2}} \underline{b} & \underline{I_{r}}=\underline{R}^{-\frac{1}{2}} \underline{b}
\end{array}
$$

The scattering matrix is defined by
$\underline{\mathrm{b}}=\underline{\mathrm{S}} \underline{\mathrm{a}}$
$\underline{\text { Relation between }} \underline{\underline{S}}$ and $\underline{\underline{Z}}$

$$
\begin{aligned}
& \underline{V}=\underline{Z} \underline{I} \\
& \underline{R^{\frac{1}{2}}}(a+b)=\underline{Z} \underline{R}^{-\frac{1}{2}}(\underline{a}-\underline{b}) \\
& \underline{a}+\underline{b}=\underline{R}^{-\frac{1}{2}} \underline{Z} \underline{R}^{-\frac{1}{2}}(\underline{a}-\underline{b})=\underline{Z_{n}} \underline{(\underline{a}-\underline{b})} \quad \underline{Z_{n}}=\underline{R}^{-\frac{1}{2}} \underline{Z} \underline{R}^{-\frac{1}{2}} \\
& \left(\underline{Z_{n}}+\underline{1}\right) \underline{b}=\left(\underline{Z_{n}}-\underline{1}\right) \underline{a} \\
& \underline{b}=\left(\underline{Z_{n}}+\underline{1}\right)^{-1}\left(\underline{Z_{n}}-\underline{1}\right) \underline{a} \\
& \underline{S}=\left(\underline{Z_{n}}+\underline{1}\right)^{-1}\left(\underline{Z_{n}}-\underline{1}\right)=\left(\underline{Z_{n}}-\underline{1}\right)\left(\underline{Z_{n}}+\underline{1}\right)^{-1} \\
& \hline
\end{aligned}
$$

$$
\begin{aligned}
\underline{S} & =\left(\underline{Z_{n}}-\underline{1}\right)\left(\underline{Z_{n}}+\underline{1}\right)^{-1}=\left(\underline{Z_{n}}+\underline{1}-\underline{2}\right)\left(\underline{Z_{n}}+\underline{1}\right)^{-1} \\
& =\underline{1-2}\left(\underline{Z_{n}}+\underline{1}\right)^{-1}=\underline{\underline{1}-2 \underline{Y_{n n}}}
\end{aligned}
$$

Where

$$
\begin{aligned}
\underline{Y_{a n}} & =\left(\underline{Z_{n}}+\underline{1}\right)^{-1}=\left(\underline{R}^{-\frac{1}{2}} \underline{Z} \underline{R}^{-\frac{1}{2}}+\underline{R}^{-\frac{1}{2}} \underline{R} \underline{R}^{-\frac{1}{2}}\right)^{-1} \\
& =\left[\underline{R}^{-\frac{1}{2}}(\underline{Z}+\underline{R}) \underline{R}^{-\frac{1}{2}}\right]^{-1} \\
& =R^{\frac{1}{2}}(\underline{Z}+\underline{R})^{-1} \underline{R}^{\frac{1}{2}}
\end{aligned}
$$

(Normalized \& augmented \underline{Y} matrix)

As $\underline{Y}_{\underline{a}}$, and hence $\underline{Y}_{\underline{a n}}$, always exists for any well-defined n-port, it means that \underline{S} also always exists.

Examples

Ideal transformer

$\underline{Y_{a}}=\frac{1}{n_{2}^{2} R_{1}+n_{1}^{2} R_{2}}\left[\begin{array}{cc}n_{2}^{2} & -n_{1} n_{2} \\ -n_{1} n_{2} & n_{1}^{2}\end{array}\right]$
$\underline{Y_{a n}}=\frac{1}{n_{2}^{2} R_{1}+n_{1}^{2} R_{2}}\left[\begin{array}{cc}n_{2}^{2} R_{1} & -n_{1} n_{2} \sqrt{R_{1} R_{2}} \\ -n_{1} n_{2} \sqrt{R_{1} R_{2}} & n_{1}^{2} R_{2}\end{array}\right]$
$\underline{S}=\underline{1}-2 \underline{Y_{a n}}=\frac{1}{n_{2}^{2} R_{1}+n_{1}^{2} R_{2}}\left[\begin{array}{ll}n_{1}^{2} R_{2}-n_{2}^{2} R_{1} & 2 n_{1} n_{2} \sqrt{R_{1} R_{2}} \\ 2 n_{1} n_{2} \sqrt{R_{1} R_{2}} & n_{2}^{2} R_{1}-n_{1}^{2} R_{2}\end{array}\right]$
If $\frac{R_{1}}{R_{2}}=\frac{n_{1}^{2}}{n_{2}^{2}} \quad$ or $\quad n_{1}^{2} R_{2}=n_{2}^{2} R_{1}$
Then $\underline{S}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$

Alternative method
Alternative ideal transformer)

$$
\begin{aligned}
S_{11} & =\frac{R_{1}-R_{1}}{z_{1}+R_{1}}=\frac{\left(n_{1} / n_{2}\right)^{2} R_{2}-R_{1}}{()^{2} R_{2}+R_{1}}=\frac{n_{1}^{2} R_{2}-n_{2}^{2} R_{1}}{n_{1}^{2} R_{2}+n_{2}^{2} R_{1}} \\
a_{1} & =E_{1} / 2 \sqrt{R_{1}} \\
b_{2} & =V_{2} / \sqrt{R_{2}}=\frac{n_{2}}{n_{1}} \frac{V_{1}}{\sqrt{R_{2}}}=\frac{n_{2}}{n_{1}} E_{1} \frac{\left(n_{1} / n_{2}\right)^{2} R_{2}}{R_{1}+\left(n_{1} / n_{2}\right)^{2} R_{2}} \frac{1}{\sqrt{R_{2}}} \\
& =\frac{n_{2} E_{1}}{n_{1} \sqrt{R_{2}}}=\frac{n_{1}^{2} R_{2}}{n_{1}^{2} R_{2}+n_{2}^{2} R_{1}} \\
S_{21} & =\frac{b_{2}}{a_{1}}=2 \sqrt{\frac{R_{1}}{R_{2}}} \frac{n_{2}}{n_{1}} \frac{n_{1}^{2} R_{2}}{n_{1}^{2} R_{2}+n_{2}^{2} R_{1}}=\frac{2 n_{1} n_{2} \sqrt{R_{1} R_{2}}}{n_{1}^{2} R_{2}+n_{2}^{2} R_{1}}
\end{aligned}
$$

Going back to

$$
\begin{aligned}
\underline{S} & =\left(\underline{Z_{n}}+1\right)^{-1}\left(\underline{Z_{n}}-\underline{1}\right) \\
& =\left[\underline{R^{-\frac{1}{2}}} \underline{Z} \underline{R^{-\frac{1}{2}}}+\underline{R^{-\frac{1}{2}}} \underline{R} \underline{R^{-\frac{1}{2}}}\right]^{-1}\left[\underline{R^{-\frac{1}{2}}} \underline{Z} \underline{R^{-\frac{1}{2}}}-\underline{R^{-\frac{1}{2}}} \underline{R} \underline{R^{-\frac{1}{2}}}\right] \\
& =\left[\underline{R^{-\frac{1}{2}}}(\underline{Z}+\underline{R}) \underline{R^{-\frac{1}{2}}}\right]^{-1}\left[\underline{R^{-\frac{1}{2}}}(\underline{Z}-\underline{R}) \underline{R^{-\frac{1}{2}}}\right] \\
& =\underline{R^{\frac{1}{2}}}(\underline{Z}+\underline{R})^{-1} \underline{R^{\frac{1}{2}}} \underline{R^{-\frac{1}{2}}}(\underline{Z}-\underline{R}) \underline{R^{-\frac{1}{2}}} \\
\underline{S} & =\underline{R^{\frac{1}{2}}}(\underline{Z}+\underline{R})^{-1}(\underline{Z}-\underline{R}) \underline{R^{-\frac{1}{2}}}
\end{aligned}
$$

Normalization

Divides row i by $\sqrt{R_{i}} \quad$ Divides col j by $\sqrt{R_{j}}$
$(\mathrm{i}, \mathrm{j})^{\text {th }}$ element of $\underline{Z_{n}}$ is $\frac{Z_{i j}}{\sqrt{R_{i} R_{j}}}$

Gyrator

$\underline{Y_{a}}=\left[\begin{array}{ll}R_{1} & -R \\ R & R_{2}\end{array}\right]^{-1}=\frac{1}{R^{2}+R_{1} R_{2}}\left[\begin{array}{ll}R_{2} & R \\ -R & R_{1}\end{array}\right]$
$\underline{Y_{a n}}=\frac{1}{R^{2}+R_{1} R_{2}}\left[\begin{array}{cc}R_{1} R_{2} & R \sqrt{R_{1} R_{2}} \\ -R \sqrt{R_{1} R_{2}} & R_{1} R_{2}\end{array}\right]$
$\underline{S}=\underline{1}-2 \underline{Y_{a n}}=\frac{1}{R^{2}+R_{1} R_{2}}\left[\begin{array}{cc}R^{2}-R_{1} R_{2} & -2 R \sqrt{R_{1} R_{2}} \\ 2 R \sqrt{R_{1} R_{2}} & R^{2}-R_{1} R_{2}\end{array}\right]$
If $R_{1} R_{2}=R^{2}$
Then $\underline{S}=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$
Note: We do not require $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}$

Direct calculation:

$Z_{1}=\frac{R^{2}}{R_{2}}$
$V_{1}=E \frac{Z_{1}}{Z_{1}+R_{1}}=\frac{E R^{2}}{R^{2}+R_{1} R_{2}}, \quad V_{i 1} \equiv \frac{E}{2}, \quad a_{1}=\frac{E}{2 \sqrt{R_{1}}}$
$b_{1}=V_{r 1} / \sqrt{R_{1}}=\left(V_{1}-V_{i 1}\right) / \sqrt{R_{1}}$
$S_{11}=\frac{b_{1}}{a_{1}}=\frac{R^{2}-R_{1} R_{2}}{R^{2}+R_{1} R_{2}}$
$V_{2}=V_{r 2}=R I_{1}=R \frac{E}{R_{1}+Z_{1}}$
$b_{2}=\frac{V_{r 2}}{\sqrt{R_{2}}}=\frac{E}{\sqrt{R_{2}}} \frac{R}{R_{1}+Z_{1}}=E \frac{R \sqrt{R_{2}}}{R_{1} R_{2}+R^{2}}$
$S_{21}=\frac{b_{2}}{a_{1}}=\frac{2 R \sqrt{R_{1} R_{2}}}{R_{1} R_{2}+R^{2}}$

To find $S_{12} \& S_{22}$, move E is series with R_{2}
Then, $R_{1} \leftrightarrow R_{2}, R \rightarrow-R$, hence $S_{22}=S_{11}, S_{12}=-S_{21}$

Find the scattering matrix $\mathrm{S}(\mathrm{s})$ of the circuit shown using direct analysis.
(Note: the circuit is the same as on p. 74 of the notes.)

From the circuit,
$Z_{1}=\frac{3 s^{3}+9 s^{2}+2 s+3}{3 s^{2}+9 s+1}$
$S_{11}=\frac{Z_{1}-R_{1}}{Z_{1}+R_{1}}=\frac{3 s^{3}+6 s^{2}-7 s+2}{3 s^{3}+12 s^{2}+11 s+4}$

By circuit analysis,
$V_{2}=\frac{3 E_{g 1}}{3 s^{3}+12 s^{2}+11 s+4}=V_{2 r}$
$S_{21}=2 \sqrt{\frac{R_{1}}{R_{2}}} \frac{V_{2 r}}{E_{g 1}}=\frac{2 \sqrt{3}}{3 s^{3}+12 s^{2}+11 s+4}$

Method of using $\underline{Y_{a n}}$

$$
\begin{aligned}
& \omega=1 \mathrm{ra} / \mathrm{s} \\
& Z_{\sim} a=\left[\begin{array}{cc}
R_{1}+s L_{1}+1 / s C & 1 / s C \\
1 / S C & R_{2}+s L_{2}+1 / s C
\end{array}\right] \\
& =\left[\begin{array}{cc}
1+s+\frac{1}{3 s} & \frac{1}{3 s} \\
\frac{1}{3 s} & 3+s+\frac{1}{35}
\end{array}\right] \\
& Y a=\frac{1}{3 s^{3}+12 s^{2}+11 s+4}\left[\begin{array}{cc}
3 s^{2}+9 s+1 & -1 \\
-1 & 3 s^{2}+3 s+1
\end{array}\right] \\
& Y_{a n}=\frac{1}{3 s^{3}+12 s^{2}+11 s+4}\left[\begin{array}{cc}
3 s^{2}+9 s+1 & -\sqrt{3} \\
-\sqrt{3} & 9 s^{2}+9 s+3
\end{array}\right] \\
& S=\frac{11}{N}-2 Y_{a n}=\frac{1}{3 s^{3}+12 s^{2}+11 s+4}\left[\begin{array}{cc}
3 s^{3}+6 s^{2}-7 s+2 & 2 \sqrt{3} \\
2 \sqrt{3} & 3 s^{3}-6 s^{2}-7 s-2
\end{array}\right]
\end{aligned}
$$

1. The twoport shown operates between two 50 -ohm terminations. Its scattering parameters must be $S 11=S 22=0$, and $S 12=S 21=0.707$.
a. Find the element values R1, R2 and R3.
b. What function can the twoport perform?

2. Syminetric terminations and $S_{i j}$,
hence $R_{3}=R_{1}$

$$
Z_{1}=R_{1}+\frac{R_{2}\left(R_{1}+R\right)}{R_{1}+R_{2}+R}
$$

$$
S_{11}=0 \rightarrow z_{1}=R
$$

$$
\begin{aligned}
& Z_{1} \\
& S_{21} \frac{1}{\sqrt{2}}=2 \frac{V}{E}, \quad I=\frac{E}{R+Z_{1}}=\frac{E}{2 R}, I V=I \frac{R_{2} R}{R_{1}+R_{2}+R} \\
& \frac{1}{\sqrt{2}}=\frac{V^{2}}{Z R} \frac{R_{2} R}{R_{1}+R_{2}+R}=\frac{R-R_{1}}{R+R_{1}} \rightarrow(1+\sqrt{2}) R_{1}=(\sqrt{2}-1) R
\end{aligned}
$$

$$
R_{1}=R_{3} \cong 8.58 \Omega, R_{2} \cong 141.4 \Omega
$$

$3-d B$ attenuator.

Method of using $\underline{Y_{a n}}$

$$
\begin{aligned}
& \mathcal{Z}_{a}=\left[\begin{array}{cl}
\overparen{R+R_{1}+R_{2}} & R_{2} \\
R_{2} & R_{5}
\end{array}\right] \\
& Y_{a}=\left[\begin{array}{cc}
R_{s} & -R_{2} \\
-R_{2} & R_{s}
\end{array}\right] \frac{1}{R_{3}^{2}-R_{2}^{2}} \\
& Y_{a_{n}}=\frac{R}{R_{5}^{2}-R_{2}^{2}}\left[\begin{array}{l}
R_{5}-R_{2} \\
-R_{2}
\end{array}\right] \\
& \approx=1-2 Y_{a n}=\frac{1}{R_{5}^{2}-R_{2}^{2}}\left[\begin{array}{c}
R_{5}^{2}-R_{2}^{2}-2 R_{5} R \quad 2 R_{2} \\
2 R_{2}
\end{array}\right] \\
& \text { For } S_{11}=S_{22}=0, \quad R_{5}^{2}-R_{2}^{2}-2 R_{S} R=0 \\
& \text { For } S_{12}=S_{21}=\frac{1}{\sqrt{2}}, R_{5}^{2}-R_{2}^{2}-2 \sqrt{2} R_{2} R=0 \\
& R_{s}=\sqrt{2} \cdot R_{2} \\
& 2 R_{2}^{2}-B_{2}^{2}-2 \sqrt{2} R_{q} R=0 \\
& R_{2}=2 \sqrt{2} R_{i} \cong 1.41 .4 \Omega \\
& R_{s}=4 R=200 \Omega \\
& R_{1}=R_{5}-R-R_{2} \cong 8.58 . \Omega
\end{aligned}
$$

2.a. Find the $\underset{\sim}{y}$ matrix of the twoport shown.
b. Find its scattering matrix if it is connected between terminations $R 1=1 \mathrm{k} \Omega$ and $R 2=4 \mathrm{k} \Omega$.
c. What function does the twoport perform?

2. $I=\left[\begin{array}{cc}\sigma_{a_{2}}+\sigma_{b} & -k_{2} \sigma_{b} \\ -k_{i} \epsilon_{c} & \sigma_{c}+\sigma_{d}\end{array}\right] \searrow$

So

$$
\underset{\sim}{v}=\left[\begin{array}{cc}
0 & q \\
-g & 0
\end{array}\right], \text { where } g=0.5 \mathrm{~ms}
$$

So the circuit is a gyrator, with $r=2 \mathrm{k} \Omega$. Since $R_{1} R_{2}=4 \mathrm{k} \Omega^{2}=r^{2}$ $\underset{\sim}{S}=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$.

POINT OF INTEREST: The Vector Network Analyzer

The S parameters of passive and active networks can be measured with a vector network analyzer, which is a two- (or four-) channel microwave receiver designed to process the magnitude and phase of the transmitted and reflected waves from the network. A simplified block diagram of a network analyzer similar to the HP8510 system is shown below. In operation, the RF source is usually set to sweep over a specified bandwidth. A four-port reflectometer samples the incident, reflected, and transmitted RF waves; a switch allows the network to be driven from either port I or port 2. Four dual-conversion channels convert these signals to 100 kHz IF frequencies, which are then detected and converted to digital form. A powerful internal computer is used to calculate

and display the magnitude and phase of the S parameters, or other quantities that can be derived from the S parameters, such as SWR, return loss, group delay, impedance, etc. An importiant feature of this network analyzer is the substantial improvement in accuracy made possible with error correcting software. Errors cansed by directional coupler mismatch, imperfect directivity, loss, and variations in the frequency response of the analyzer system are accounted for by using a twelve-term error model and a calibration procedure. Another useful feature is the capability to determine the time domain response of the network by calculating the inverse Fourier transform of the frequency domain data.

